
Design and Implementation of
NetBSD Base System Package Distribution Service

Ken’ichi Fukamachi
Chitose Institute of Science and Technology

k-fukama@photon.chitose.ac.jp

Yuuki Enomoto
Cybertrust Japan Co., Ltd.

yuki.enomoto@cybertrust.co.jp

Abstract

We consider that Unix operating system should be
built on fine granular small parts (packages) to im-
prove the system maintenance. It is expected that it
enables speedy security update, system update track-
ing in detail, easy replacement and rollback of specific
parts.
We have implemented and run a new service to

distribute modular base system userland for NetB-
SD. We generate the least amount of modular base
packages by using basepkg.sh. It splits NetBSD dai-
ly binaries into 1000 over packages based on syspkgs
meta-data and ident comparison within the binaries.
This scheme drastically reduces the processing time
to realize operations within practical time.
Our system have shown that granular update sys-

tem and service can be implemented and operational
under breakdown approach. NetBSD users can main-
tain NetBSD base system in more granular way with
fine update history and build an arbitrary system
from the NetBSD minimal installation.

1 Introduction

Historically, before the use of Internet leased lines was
popular in 1990s, operating system (OS) had been
managed on one source tree and the source tree set
has been distributed. The typical example is BSD
Unix. It has been developed in its own source tree in-
cluding kernel, general commands, configuration files,
and manuals. BSD Unix distinguishes between the
official distribution and 3rd party software.

Another example is Linux distribution. It does not
distinct its own base system from third-party soft-
ware. It assembles a lot of small packages which are
created and maintained by many different authors.
To manage the whole system, it is inevitable to de-
velop software such as apt for Debian GNU/Linux
and yum (dnf in the future) for Red Hat Enterprise
Linux.
Aside from the origin of development styles, OS

built on fine granular small parts must be preferable
to improve the system maintenance. It is expected
that it enables speedy security update, system update
tracking in detail, easy replacement and rollback of
specific parts.
To reconstitute NetBSD base system to be com-

prised of small parts, we have implemented software
(Chapter 4) to dispose the base system to 1000 over
parts and run a service (Chapter 5) to distribute them
with our experimental client (Chapter 6). In this pa-
per we call our strategy breakdown approach in con-
trast to the bottom up one of Linux distribution.
The rest of this paper is organized as follows. We

define terms in Chapter 2. We introduce components
of the whole service in Chapter 3. The details of each
component are described in Chapter 4, 5 and 6. We
discuss several remaining issues in Chapter 7.

2 Terms

The term “package” implies both 3rd party software
management and a kind of a container. The usage
differs from OS to OS. We need to clarify the terms
“base system” and “package”. In this paper, we use

nycdn.netbsd.org (CDN) hosted by fastly.com

NetBSD-daily
daily build system
(New York)

our build system
running on SAKURA Internet

1. download base.tgz, ... from nycdn
2. extract them

3. check ident for extracted binaries

4. run basepkg to generate packages
5. distribute packages

nbpkg.sh update
nbpkg.sh full-upgrade
 updating openssl ...
 restarting postfix
 restarting sshd
 ...

Figure 1: Overview of NetBSD base system package distribution service. It generates base packages by using
basepkg and distributes them. nbpkg.sh client demonstrates updating and restarting.

the term “package” as a container by default.

Linux distributions consider the whole system con-
sists of packages but BSD Unix(s) distinguish be-
tween the base system and 3rd party software. BSD
Unix(s) consider that the whole system consists of
the base system and 3rd party software.

“base system” implies a set of programs officially
maintained and distributed by the project. In almost
cases, the OS base system distribution is divided by
roles to a set of tarballs (which extension is known as
”.tgz”) such as ”base.tgz” (mandatory for the operat-
ing system), ”comp.tgz” (compiler tools), ”man.tgz”
(manuals) and so on. BSD Unix base system is com-
posed of a set of 10 or more tarballs.

In the BSD Unix, we manage each 3rd party soft-
ware as a “package”. “package” itself implies a
container which consists of software, documentation,
configuration files and this package’s meta data re-
quired to operate in installation and de-installation.
We also call the 3rd party software system “pack-
age”. Each BSD Unix project provides the package
system such as pkgsrc (NetBSD), ports (FreeBSD
and OpenBSD) and so on. Users can easily handle
the package by using the management system.

3 Components of NetBSD Base
System Package Distribution
Service

We have implemented and been running a new ser-
vice to distribute modular base system userland for
NetBSD (Figure 1). This distribution system con-
sists of three components: (1) basepkg[1, 2] (2)
nbpkg-build.sh[3] (3) nbpkg.sh[3].

basepkg splits NetBSD base system into 1000 over
packages (we call them base packages). basepkg is
a simple almost POSIX compliant shell script built
on pkgsrc[4] framework and syspkgs[5] meta-data.
Hence the naming convention of base package is
same as syspkgs one such as base-crypto-shlib
(shared libraries for cryptography, classified as a
mandatory system).

nbpkg-build.sh is the top level dispatcher to
run basepkg for NetBSD binaries downloaded from
nycdn.netbsd.org. We generate base packages
which changes are detected based on ident (RCS Id)
comparison. Though community based developmen-
t does not have powerful computer resources, those
measures reduce the work, as a result, our build sys-

n
y
cd

n
.n

etb
sd

.org

$DESTDIR

.../n
etb

sd
-8

/$
A

R
C

H
/m

a
in

t/$
p

a
ck

a
g
e.tg

z
.../n

etb
sd

-8
/$

A
R

C
H

/a
ll/$

p
a
ck

a
g
e.tg

z

generate them under $category/$package/
 +PRESERVE
 +BUILD_INFO
 +CONTENTS
 +DESC
 +COMMENTS
 +INSTALL
 +DEINSTALL

basepkg.sh

pkg_create ...

basepkg.sh temporary meta-data

 work/$category/FILES
 work/$category/$package/PLIST

syspkg meta-data

$SRCDIR/distrib/sets/mi
$SRCDIR/distrib/sets/md.$ARCH
 +
basepkg patches

nbpkg-build.sh
 download, extract, compare ident

package list to generate
based on ident comparison

Figure 2: basepkg internals

tem, running on low spec VPS1 , works out daily to
provide base packages for NetBSD 8.0 stable branch
(62 targets).
nbpkg.sh is an experimental client to show our op-

eration model. basepkg is built on pkgsrc framework
so that we can use pkgsrc functions as could as possi-
ble. nbpkg.sh is an extension to pkgin[6] (pkgsrc/
pkgtools/pkgin) which provides apt/yum/dnf like
functions to maintain the base system more system-
atically.

4 Basepkg

basepkg is a 1200 lines Bourne shell script to split
NetBSD base system into 1000 over packages. It
consists of meta-data and package build system. The

1bytebench(pkgsrc/benchmarks/bytebench) shows our VP-
S power is considered to be almost same as a popular home
server such as NEC S70 (its CPU is Intel Pentium G6950) on
sale in 2011.

basepkg processing (Figure 2) is briefly described be-
low. See the reference[1] for more details.
The meta-data is derived from NetBSD source tree

but modified and enhanced by us. The basepkg
meta-data is based on syspkgs one, files in /usr/
src/distrib/sets/lists/. Each line of the meta-
data file contains a set of information (path, syspkgs
package name, comments) such as

./bin/ls base-util-root

./bin/rcorder base-obsolete obsolete

./bin/rump.dd base-util-root rump

./usr/bin/cpp base-util-bin gcccmds

It has been maintained but is inconsistent and con-
tains several bugs. basepkg imports the syspkgs
meta-data and modifies it to fix several bugs and en-
hances it to support X11.
The actual build process of basepkg is running

pkg_* utilities (pkgsrc/pkgtools/pkg_install) to
split the base system according to the meta-data.

list_arch = amd64 evbarm evbmips evbppc hpcarm i386 sparc64 xen
arch = amd64
branch = netbsd-8
url_base = http://nycdn.netbsd.org/pub/NetBSD-daily/netbsd-8/
build_nyid = 201811180430Z
build_date = 20181118
build_url = $url_base/$build_nyid/$arch/binary/sets/
for arch in $list_arch
do

nbdist_download $arch $build_url
nbdist_extract $arch
nbdist_check_ident_changes ...
if "X$is_ident_changes_found" = "Xyes"; then

nbpkg_build_gen_basepkg_conf $arch $branch ...

(1) maint mode
nbpkg_build_run_basepkg $arch $branch "maint"
nbpkg_release_basepkg_packages $arch $branch "maint"

(2) all mode
nbpkg_build_run_basepkg $arch $branch "all"
nbpkg_release_basepkg_packages $arch $branch "all"

fi
done

Figure 3: Concept of the nbpkg-build.sh main loop

basepkg is built on pkgsrc framework. It is good to
avoid reinventing the wheel. basepkg-generated
package format is same as pkgsrc one, so that we can
use features pkgsrc provides. For example, we can
use pkg add/pkg delete to add/remove base pack-
ages. Moreover, we can use more powerful utility
such as pkgin which provides apt/yum/dnf like func-
tions for pkgsrc. By using pkg summary(5), pkgin
resolves associated dependencies among base pack-
ages and provides smart operations for installation,
removal and upgrade of base packages.

5 Base Package Generation and
Distribution System

5.1 Overview

basepkg is just a script to split NetBSD base
system to 1000 over packages. To provide the
NetBSD base system upgrade service, we need
to design, implement a package generation system
(nbpkg-build.sh) described in this section and run
the web service at http://basepkg.netbsd.fml.
org. nbpkg-build.sh is the top level dispatcher
to run basepkg to split NetBSD binaries. Both
nbpkg-build.sh and the web runs on SAKURA

tar -C $DEST_DIR -zxpf $DIST_DIR/*.tgz
find $DEST_DIR -exec /usr/bin/ident {} \; > $IDENT_NEW
diff $IDENT_OLD $IDENT_NEW |

sh $CONVERT_TO_PACKAGE_NAME_VIA_SYSPKGS_DATA > $TARGETS

Figure 4: Brief description of logic on how to compare ident information: NetBSD binaries e.g. base.tgz,
etc.tgz, ... are downloaded to $DIST DIR and are extracted at $DEST DIR. The final output $TARGETS
file contains only syspkgs names e.g. base-sysutil-bin. $TARGETS file is passed to basepkg.sh as an
optional argument.

Internet VPS(v3)[7]2.
nbpkg-build.sh (1) downloads binaries from

nycdn.netbsd.org (fastly CDN) (2) extracts them
(3) checks ident within the extracted NetBSD base
system binaries and (4) runs basepkg to generate
base packages.

5.2 Download and Extract NetBSD
Binaries

Firstly we need to prepare NetBSD base system bi-
naries to split.
It is preferable to build the binary from the source

code to avoid versioning problem (see the Section 7)
but it requires a lot of machine resources (both CPU
power and storage). To process them within prac-
tical time, we decided not to build NetBSD from
the source code but download NetBSD binaries pro-
vided as NetBSD-daily (what we call daily build).
The daily build system runs at Columbia Universi-
ty in New York[8] but we can download the binaries
via nycdn.netbsd.org hosted on fastly.com CDN
(contents delivery network). Also, our build machine
(basepkg.netbsd.fml.org running on SAKURA In-
ternet VPS[7]) has enough bandwidth to Internet.
Hence we can download binaries enough fast.
It is observed that the time to download and ex-

tract them requires not more than 300 seconds (the
average is 200 seconds for downloading and 70 sec-
onds for extraction) per one distribution e.g. amd64
on netbsd-8 branch. If we build NetBSD from the

23 CORES, 3GB MEMORY, 200GB HDD

source on this host, it requires at least 1200 second-
s even in the case of running “build.sh -u release”
(18000 seconds in the case of running “build.sh re-
lease”). This process contributes to the processing
time reduction and does not consume the storage
temporarily required for build process.

5.3 Base Package Generation Strate-
gy

We have implemented the following two plans to con-
sider which is proper in operating NetBSD upgrade
service using base packages.
The plan A proposed in AsiaBSDCon2018[1] is

that we generate all available base packages daily and
determine which base package should be installed ac-
cording to a given configuration based on NetBSD
security advisory. In this case, the implementation of
the package generation system is simple but we need
huge machine resources. To make matters worse, it
is not automatic since somebody needs to edit the
configuration.
The plan B is opposite to the plan A. We have

only to generate the least amount of base packages
having the change after the major release. We can
find changes by tracing the ident information in bi-
naries, To implement it, we need to modify both
nbpkg-build.sh and basepkg but this modification
can drastically reduce the amount of work in gener-
ation base packages. In addition it is important that
this mechanism runs automatically.
Hence we decided to use and run the service based

on the plan B. We define the basis of the ident com-
parison is the most recent major release, NetBSD 8.0
release now.

5.4 Ident Based Comparison

The ident based comparison is straightforward (Fig-
ure 4). We check all files on the extracted NetBS-
D base system and compare the ident information
with the previous one to determine which base pack-
ages are changed and so should be re-generated. The
list of base packages which should be re-generated is
passed to the basepkg as the configuration.
In this case, basepkg has only to build a minimum

of packages. Both the saving of targets and down-
loading via CDN (Section 5.2) drastically reduces the
processing time. Currently our processing time per
arch per branch is about 1300 seconds on average. It
includes downloading, extraction and basepkg which
runs two times to generate packages for two modes
described below (Section 5.5). It is estimated that
we can process 62 targets of netbsd-8 branch within
one day. We try to process Tier 1[9] targets twice a
day to keep the base package up-to-date as could as
possible, but Tier 2 ones once a day.

5.5 Package Dependency Problems

Our breakdown approach introduces a new kind of d-
ifficulty on that the basis of comparison is arbitrary.
Consider the following cases: (1) keep the system up-
to-date mainly for security update (2) build up an
arbitrary system from the minimum one. They are
similar but the dependencies among base packages
differ in essential. In the case 1, we need only pack-
ages having the change after the major release. In
the case 2, we need to prepare both all base packages
for the major release and packages having the change
after the major release. The package dependencies
in two cases differ since packages in the case 2 de-
mands major release packages if needed. Since the
coexistence of different dependency within one pack-
age is difficult, our system distributes two kinds of
base packages with different dependency at different
URLs.

[at .../netbsd-8/$ARCH/maint/]
SHA512
base-cron-bin-8.0.20181129.tgz
base-ext2fs-root-8.0.20181129.tgz
base-ipf-bin-8.0.20190119.tgz
...

[at .../netbsd-8/$ARCH/all/]
SHA512
base-adosfs-root-8.0.20180717.tgz
base-amd-bin-8.0.20180717.tgz
base-amd-examples-8.0.20180717.tgz
base-amd-shlib-8.0.20180717.tgz
...
base-cron-bin-8.0.20180717.tgz
base-cron-bin-8.0.20181129.tgz
base-cron-root-8.0.20180717.tgz
...

Figure 5: Examples of packaegs for both maint and
all modes. The path of “all” mode contains base
packages for 8.0 release (suffix .20180717) and pack-
ages (e.g. suffix .20181129 and .20190119) which
changed after 8.0 release. Howeve the path of “main-
t” mode contains only changed packages.

In the case 1, we call it maint mode, we assume
a scenario that users have full-installed NetBSD (e.g.
NetBSD 8.0) initially and keep it as the latest NetBS-
D 8.0 stable (netbsd-8 branch). In this case, we have
only to install (overwrite) all base packages having
the change after the major release. This update pro-
cess is able to work automatically. It is possible that
each user can install the specific package manually if
needed.
In the case 2, we call it all mode, it is necessary

to think about the possibility that we need to install
packages which do not exist on the system. Consider
the minimal NetBSD which consists of only base.tgz
and etc.tgz. If we newly want to install a C com-
piler (e.g. /usr/bin/cc), which does not exist now,
we only have to run ‘‘pkg add comp-c-bin’’. If
comp-c-bin has no difference from 8.0 release, there
is no comp-c-bin package in the maint mode (case

1). In the case 2, we need to obtain and instal-
l 8.0 release comp-c-bin base package which name is
comp-c-bin-8.0.20180717.tgz. Hence in this case,
for the possibility building any system from a scratch,
we need to prepare both all base packages for the ma-
jor release and packages having the change after the
major release.
The details of package dependency are as fol-

lows. For example, let autopsy the dependen-
cy of base-sysutil-bin-8.0.20190119.tgz tarball.
+CONTENTS file (pkgsrc meta-data) in the tarball in
maint mode is defined as

@pkgdep base-sys-shlib>=8.0.20181129

but +CONTENTS in all mode contains

@pkgdep base-sys-root>=8.0.20180717
@pkgdep base-sys-shlib>=8.0.20181129
@pkgdep base-sys-usr>=8.0.20180717

where the suffix 8.0.20180717 implies the NetBS-
D 8.0 release we define artificially since NetBSD 8.0
was released on July 17, 2018. Due to this artificial
dependency

@pkgdep $package>=8.0.20180717

a package which does not exist can be installed auto-
matically.

6 Experimental Client

6.1 Overview

We provide an experimental client nbpkg.sh to show
our operation model. As mentioned above, basepkg-
generated package format is same as pkgsrc one, so
that we can use full features pkgsrc provides. We
design our client as a wrapper of pkgin to provide
integrated service like apt/yum/dnf on Linux distri-
bution.
Our current experimental client uses /var/db/

pkg/ directory for package registration which pkgsrc
uses originally. Hence /var/db/pkg/ holds installed
package data for both pkgsrc and basepkg. It is
considered to be easy to distinguish basepkg pack-
ages from pkgsrc ones by names, since the naming

convention for pkgsrc and basepkg are very differ-
ent.

6.2 Usage

nbpkg.sh usage is similar to apt command. See
a demonstration running update and full-upgrade
commands in Figure 6.
At the first time, nbpkg.sh checks the environ-

ment and install mandatory package management
utilities (pkgsrc/pkgtools/) such as pkg install
(pkgsrc/pkgtools/pkg_install) and pkgin by de-
fault if they are not found.
‘‘nbpkg.sh update’’ updates the database

(pkg summary(5)) from a remote repository defined
by the environmental variable PKG_PATH which is
hard-coded in nbpkg.sh.
‘‘nbpkg.sh upgrade’’ is reserved, not recom-

mended currently.
We can use ‘‘nbpkg.sh full-upgrade’’ to keep

the system up-to-date, the latest one on stable
branch, automatically. By default we assume maint
mode operation described above (Section 5.5).
‘‘nbpkg.sh full-upgrade’’ upgrades packages
specified by a file pkg_list2upgrade in PKG_PATH
e.g. http://basepkg.netbsd.fml.org/pub/
NetBSD/basepkg/netbsd-8/$ARCH/maint/pkg_
list2upgrade. pkg_list2upgrade describes a list
of all packages having the change after the major
release. It is prepared and updated by our system
nbpkg-build.sh.
We can install or remove arbitrary packages man-

ually. We assume all mode for such operation. For
example, to install a C compiler /usr/bin/cc, we
run ‘‘nbpkg.sh -a install comp-c-bin’’ where
-a option implies all mode (Section 5.5). It resolves
the dependecies so that it installs all packages re-
quired to use a C compiler. The packages to install
are the latest stable one if exists but the last major
release (8.0 release now) ones if the package has no
change after release.

6.3 Extension

Our client nbpkg.sh is not just a wrapper of pkgin.
It is extended to support (1) fool-proof function not

nbpkg.sh full-upgrade

Running install with PRE-INSTALL for pkg_install-20180425.
man/man1/pkg_add.1

...
Package pkg_install-20180425 registered in /var/db/pkg/pkg_install-20180425

...

Running install with PRE-INSTALL for pkgin-0.11.6.
bin/pkgin
man/man1/pkgin.1

...
Package pkgin-0.11.6 registered in /var/db/pkg/pkgin-0.11.6

...
Requesting http://basepkg.netbsd.fml.org/.../maint/pkg_list2upgrade
100% |***********************************| 435 967.66 KiB/s 00:00 ETA
435 bytes retrieved in 00:00 (608.60 KiB/s)
pkgin import /var/db/nbpkg/pkg_list2upgrade
reading local summary...
processing local summary...
processing remote summary (http://basepkg.netbsd.fml.org/.../maint)
... snip ...

downloading pkg_summary.gz: ...
calculating dependencies...done.

29 packages to install:
base-cron-bin-8.0.20181123 base-ext2fs-root-8.0.20181123
... snip ...
xetc-sys-etc-8.0.20181123

0 to refresh, 0 to upgrade, 29 to install
62M to download, 221M to install

proceed ? [Y/n] y
downloading base-cron-bin-8.0.20181123.tgz ...

...
installing base-cron-bin-8.0.20181123...

...
pkg_install warnings: 0, errors: 0
reading local summary...
processing local summary...

...
marking xetc-sys-etc-8.0.20181123 as non auto-removable

Figure 6: Example of upgrading the system

to overwrite /etc by accident (2) alias function for us
to handle user friendly package names.
To implement the fool proof, etc-* packages was

removed from pkg_list2upgrade. Hence automatic
upgrade for etc-* packages does not work but you
can use explicitly running nbpkg.sh install etc-*
to update files under /etc/ (We trust each user for
such critical actions).
We support nbpkg.sh alias function since syspkgs

naming convention is too far from the usu-
al convension. For example, syspkgs name
base-crypto-shlib contains libcrypto.a and
libssl.a but generally we call them openssl
shared libraries. base-crypto-bin includes
openssl command. By our alias support, we can
use ‘‘nbpgk.sh upgrade openssl’’ to update both
openssl libraries and commands. Currently the fol-
lowing aliases are defined.

alias syspkgs-package-name

libcrypto.so base-crypto-shlib
libssl.so base-crypto-shlib
openssl base-crypto-shlib
openssl base-crypto-bin
openssh base-secsh-bin
named base-bind-bin
bind base-bind-bin
postfix base-postfix-bin

We can install openssh by running ‘‘nbpkg.sh
install openssh’’ instead of ‘‘nbpkg.sh
install base-secsh-bin’’. This definition is
hard-coded currently, it is an issue to resolve in the
future.
Theoretically we can rollback the specific package

manually. After checking package registration logs
in /var/db/pkg, we run nbpkg.sh to remove the
installed package and enforce the installation of the
previous one.

7 Discussion

We have resolved several issues addressed in
AsiaBSDCon2018[1]. Especially the use of nycdn.
netbsd.org and ident based comparison contributes

to the huge reduction of processing time. However it
remains a few difficult issues such as base package ver-
sioning and dependency discussed in the Section 5.5.
We do not discuss syspkgs meta-data maintenance
problem such as validation of the granularity since
these topics are beyond our 3rd-party development
scheme.
The versioning problem implies we distinguish

base packages by the date suffix not semantic
versioning[10] x.y.z e.g. 1.0.0, 1.0.1 and so on.
In the case of the bottom up approach such as Lin-

ux distribution, OS assembles a lot of small packages
which are created and maintained by many different
authors. Each package has each author and version-
ing e.g. etc-passwd-1.0.1, bin-ls-2.0 and timezone-
20190101. The versioning are inconsistent but mean-
ingful in some sense.
In the case of BSD Unix, the whole system is main-

tained uniformly so that the version is NetBSD 8.0
for not only the whole system but also all parts in
it. Paradoxically we cannot determine the precise
version for each granular base package since the au-
thor or maintainer is ambiguous for each small parts.
For example, consider etc-sys-etc package which
contains password related files such as /etc/passwd,
/etc/master.passwd and so on. We can assign etc-
sys-etc-8.0.0 for NetBSD 8.0 release, but we cannot
automatically assign etc-sys-etc-8.0.1 when a part of
the etc-sys-etc package e.g. /etc/passwd.conf is
updated on netbsd-8 branch. In addition, NetBSD
daily build does not consider the update details and
generates the whole NetBSD system on a daily ba-
sis. Hence, especially in the case of our system, it is
practical to assign etc-sys-etc-8.0.YYYYMMDD e.g.
etc-sys-etc-8.0.20180717 not etc-sys-etc-8.0.0.
The date based naming convention may introduce

the following problem. If the base package generation
does not end within one day, package names for the
same source changes may be different among archi-
tectures e.g.

amd64/all/base-sys-shlib-8.0.20190101.tgz
...

zaurus/all/base-sys-shlib-8.0.20190102.tgz

However it is considered to be enough practical in
order to keep the system up-to-date. We always have

only to install the latest base packages irrespective of
the precise package version name since the version-
ing is consistent within each branch and architecture.
Hence the versioning problem must be trivial from
the point of practical or operational view.

8 Conclusion

We reorganize NetBSD userland by breakdown ap-
proach and run the base package distribution service
for NetBSD users.
Our build scheme is based on the use of NetBSD

daily binaries via CDN and ident based comparison
to generate the least number of base packages. It
enables practical time operations.
Our client is useful to maintain the base system

in more granular way and build an arbitrary NetB-
SD system from the minimum. Most importantly,
we can upgrade NetBSD with detailed history data
stored under /var/db/pkg/. We can trace the up-
date details on a daily basis so that we can rollback
if needed.
Our approach introduces another package depen-

dency problem but it is trivial from the point of prac-
tical view. Our system must be beneficial for NetBSD
users.

References

[1] Yuuki Enomoto and Ken’ichi Fukamachi. De-
sign, Implementation and Operation of NetBSD
Base System Packaging. AsiaBSDCon2018 Pro-
ceedings, pp. 21–31, 2018.

[2] Yuuki Enomoto. basepkg. https://github.
com/user340/basepkg. (accessed 2018-12-31).

[3] Ken’ichi Fukamachi. NetBSD modular user-
land. https://github.com/fmlorg/netbsd-
modular-userland. (accessed 2018-12-31).

[4] The NetBSD Project. pkgsrc. https://www.
pkgsrc.org, 1998. (accessed 2019-02-22).

[5] The NetBSD Project. syspkgs. http://wiki.
netbsd.org/projects/project/syspkgs,
2015. (accessed 2018-12-31).

[6] Emile ‘iMil’ Heitor. pkgin, a binary package
manager for pkgsrc. https://pkgin.net. (ac-
cessed 2019-02-22).

[7] Sakura Intenet. Sakura Internet VPS Service.
https://vps.sakura.ad.jp/. (accessed 2019-
02-22).

[8] The NetBSD Project. admin. https:
//wiki.netbsd.org/users/spz/admin/. (ac-
cessed 2019-02-22).

[9] The NetBSD Project. Platforms Supported by
NetBSD. https://www.netbsd.org/ports/.
(accessed 2019-02-22).

[10] Tom Preston-Werner. Semantic Versioning
2.0.0. https://semver.org/. (accessed 2019-
02-22).

